(x)^2+(2x)^2=45^2

Simple and best practice solution for (x)^2+(2x)^2=45^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x)^2+(2x)^2=45^2 equation:



(x)^2+(2x)^2=45^2
We move all terms to the left:
(x)^2+(2x)^2-(45^2)=0
We add all the numbers together, and all the variables
3x^2-2025=0
a = 3; b = 0; c = -2025;
Δ = b2-4ac
Δ = 02-4·3·(-2025)
Δ = 24300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24300}=\sqrt{8100*3}=\sqrt{8100}*\sqrt{3}=90\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-90\sqrt{3}}{2*3}=\frac{0-90\sqrt{3}}{6} =-\frac{90\sqrt{3}}{6} =-15\sqrt{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+90\sqrt{3}}{2*3}=\frac{0+90\sqrt{3}}{6} =\frac{90\sqrt{3}}{6} =15\sqrt{3} $

See similar equations:

| -40+x=22 | | -40+x= | | r²*3.14=1093034 | | x+32+x+32=90 | | x+2+x+2=90 | | -12(3p+5)=-132 | | p-56/10=3 | | -12(3p-5)=-132 | | x-33+x-33=90 | | -5=4m-17 | | 3z+6=21/6 | | -5=5w=5 | | 7x-1x=10 | | 10(x-82)+34=75 | | -22=5+6(1h+9) | | x-44+x-44=90 | | 6x-5=x+60 | | 5a+8+9a=21 | | 5=(4x+23/3) | | 8.75g+2.5=72.5 | | y/11=8/17 | | 1/6=-2/3x=0 | | 8m+13=3m+12 | | 154=7n | | 3^(x+4)=27^(7x) | | (5n-12)(7n+9)=0 | | 0.5(23+x)=29 | | -x+92=5x+50 | | 5(2m-5=15 | | p/2+9/8=5 | | 7=x-15 | | 5(7g=2)/4=72.5 |

Equations solver categories